7,582 research outputs found

    THE EVOLVING PHILOSOPHERS PROBLEM - DYNAMIC CHANGE MANAGEMENT

    No full text
    Published versio

    Synthesis of behavioral models from scenarios

    No full text

    The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumour necrosis factor (TNF)-alpha during murine skeletal muscle cell differentiation

    Get PDF
    Background: Eicosapentaenoic acid (EPA) is a -3 polyunsaturated fatty acid with antiinflammatory and anti-cachetic properties that may have potential benefits with regards to skeletal muscle atrophy conditions where inflammation is present. It is also reported that pathologic levels of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α are associated with muscle wasting, exerted through inhibition of myogenic differentiation and enhanced apoptosis. These findings led us to hypothesize that EPA may have a protective effect against skeletal muscle damage induced by the actions of TNF-α. Results: The deleterious effects of TNF-α on C2C12 myogenesis were completely inhibited by co-treatment with EPA. Thus, EPA prevented the TNF-mediated loss of MyHC expression and significantly increased myogenic fusion (p < 0.05) and myotube diameter (p < 0.05) indices back to control levels. EPA protective activity was associated with blocking cell death pathways as EPA completely attenuated TNF-mediated increases in caspase-8 activity (p < 0.05) and cellular necrosis (p < 0.05) back to their respective control levels. EPA alone significantly reduced spontaneous apoptosis and necrosis of differentiating myotubes (p < 0.001 and p < 0.05, respectively). A 2 hour pre-treatment with EPA, prior to treatment with TNF alone, gave similar results. Conclusion: In conclusion, EPA has a protective action against the damaging effects of TNF-α on C2C12 myogenesis. These findings support further investigations of EPA as a potential therapeutic agent during skeletal muscle regeneration following injury

    Regis-Darwin specified in the p-Calculus

    Get PDF
    There now is a translator for DARWIN programs that automatically generates their π-calculus equivalents. A variety of errors in DARWIN programs can be detected at the π-calculus level. These include detection of recursive structures, unbound ports and ports that are bound in the wrong direction. It can also be used to confirm whether two REGIS-DARWIN programs are equivalent

    Swashplate feedback control for tilt-rotor aircraft

    Get PDF
    Changes in angle of attack in system were sensed indirectly by gages which responded to strains induced in wing structure. Output signals were amplified, filtered, and used to activate swashplate actuators. System provided significant reduction in blade loads and desirable changes in hub forces and moments

    Monitoring and control in scenario-based requirements analysis

    Get PDF
    Scenarios are an effective means for eliciting, validating and documenting requirements. At the requirements level, scenarios describe sequences of interactions between the software-to-be and agents in the environment. Interactions correspond to the occurrence of an event that is controlled by one agent and monitored by another.This paper presents a technique to analyse requirements-level scenarios for unforeseen, potentially harmful, consequences. Our aim is to perform analysis early in system development, where it is highly cost-effective. The approach recognises the importance of monitoring and control issues and extends existing work on implied scenarios accordingly. These so-called input-output implied scenarios expose problematic behaviours in scenario descriptions that cannot be detected using standard implied scenarios. Validation of these implied scenarios supports requirements elaboration. We demonstrate the relevance of input-output implied scenarios using a number of examples

    Experimental investigations of the effects of cutting angle on chattering of a flexible manipulator

    Get PDF
    When a machine tool is mounted at the tip of a robotic manipulator, the manipulator becomes more flexible (the natural frequencies are lowered). Moreover, for a given flexible manipulator, its compliance will be different depending on feedback gains, configurations, and direction of interest. Here, the compliance of a manipulator is derived analytically, and its magnitude is represented as a compliance ellipsoid. Then, using a two-link flexible manipulator with an abrasive cut off saw, the experimental investigation shows that the chattering varies with the saw cutting angle due to different compliance. The main work is devoted to finding a desirable cutting angle which reduces the chattering

    A Study of the Structure of the Transition Metal Hydryls Final Report

    Get PDF
    Crystal and molecular structures of transition rhodium and lithium hydril
    corecore